Sequence Selection Principles for Special Convergences

Jaroslav Šupina

Institute of Mathematics Faculty of Science of P. J. Šafárik University

31st of January 2011

(UPJŠ Košice)

Selection principles

31st of January 2011 1 / 26

(三) ト

• Hausdorff - normal - perfectly normal topological spaces - X

real valued functions

- a topological space of real valued continuous, Borel measurable functions with product topology denoted as C_p(X), B_p(X), respectively
- discrete convergence of $\langle f_n : n \in \omega \rangle$:

 $(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \to f_n(x) = f(x))$

- quasi-normal convergence:
 - 1970's equal convergence A. Császár and M. Laczkovich
 - 1990-2011 guasi-normal convergence Z. Bukovská, L. Bukovský, I. Reclaw, M. Repický, M. Scheepers, D. H. Fremlin, J. Haleš, M. Sakai, B. Tsaban, L. Zdomskyy

discrete \rightarrow quasi-normal \rightarrow pointwise

ヘロト ヘ戸ト ヘヨト ヘヨ

• Hausdorff - normal - perfectly normal topological spaces - X

real valued functions

- a topological space of real valued **continuous**, **Borel** measurable functions with product topology denoted as $C_p(X)$, $\mathcal{B}_p(X)$, respectively
- discrete convergence of $\langle f_n : n \in \omega \rangle$:

 $(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \to f_n(x) = f(x))$

- quasi-normal convergence:
 - 1970's equal convergence A. Császár and M. Laczkovich
 - 1990-2011 guasi-normal convergence Z. Bukovská, L. Bukovský, I. Reclaw, M. Repický, M. Scheepers, D. H. Fremlin, J. Haleš, M. Sakai, B. Tsaban, L. Zdomskyy

discrete ightarrow quasi-normal ightarrow pointwise

ヘロト ヘ戸ト ヘヨト ヘヨ

- Hausdorff normal perfectly normal topological spaces X
- real valued functions
- a topological space of real valued continuous, Borel measurable functions with product topology denoted as C_p(X), B_p(X), respectively
- discrete convergence of $\langle f_n : n \in \omega \rangle$:

 $(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \to f_n(x) = f(x))$

- quasi-normal convergence:
 - 1970's equal convergence A. Császár and M. Laczkovich
 - 1990-2011 guasi-normal convergence Z. Bukovská, L. Bukovský, I. Roclaw, M. Ropický, M. Scheepers, D. H. Fromlin, J. Haleš, M. Sakai, B. Tsaban, L. Zdomskyy

discrete \rightarrow quasi-normal \rightarrow pointwise

イロト イ押ト イヨト イヨ

- Hausdorff normal perfectly normal topological spaces X
- real valued functions
- a topological space of real valued continuous, Borel measurable functions with product topology denoted as C_p(X), B_p(X), respectively
- discrete convergence of $\langle f_n : n \in \omega \rangle$:

 $(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow f_n(x) = f(x))$

- quasi-normal convergence:
 - 1970's equal convergence A. Császár and M. Laczkovich
 - 1990-2011 quasi-normal convergence Z. Bukovská, L.
 Bukovský, I. Reclaw, M. Repický, M. Scheepers, D. H. Fremlin, J.
 Haleš, M. Sakaí, B. Tsaban, L. Zdomskyy

discrete \rightarrow quasi-normal \rightarrow pointwise

< □ > < 同 > < 回 > < 回

- Hausdorff normal perfectly normal topological spaces X
- real valued functions
- a topological space of real valued continuous, Borel measurable functions with product topology denoted as C_p(X), B_p(X), respectively
- discrete convergence of $\langle f_n : n \in \omega \rangle$:

 $(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow f_n(x) = f(x))$

- quasi-normal convergence:
 - 1970's equal convergence A. Császár and M. Laczkovich

 1990-2011 - quasi-normal convergence - Z. Bukovská, L. Bukovský, I. Reclaw, M. Repický, M. Scheepers, D. H. Fremlin, J. Haleš, M. Sakai, B. Tsaban, L. Zdomskyy

discrete \rightarrow quasi-normal \rightarrow pointwise

3

ヘロト 人間 ト 人目 ト 人 ヨ トー

- Hausdorff normal perfectly normal topological spaces X
- real valued functions
- a topological space of real valued continuous, Borel measurable functions with product topology denoted as C_p(X), B_p(X), respectively
- discrete convergence of $\langle f_n : n \in \omega \rangle$:

$$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow f_n(x) = f(x))$$

- quasi-normal convergence:
 - 1970's equal convergence A. Császár and M. Laczkovich
 - 1990-2011 quasi-normal convergence Z. Bukovská, L.
 Bukovský, I. Reclaw, M. Repický, M. Scheepers, D. H. Fremlin, J.
 Haleš, M. Sakai, B. Tsaban, L. Zdomskyy

discrete \rightarrow quasi-normal \rightarrow pointwise

イロト イボト イヨト イヨト

- Hausdorff normal perfectly normal topological spaces X
- real valued functions
- a topological space of real valued continuous, Borel measurable functions with product topology denoted as C_p(X), B_p(X), respectively
- discrete convergence of $\langle f_n : n \in \omega \rangle$:

$$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow f_n(x) = f(x))$$

- quasi-normal convergence:
 - 1970's equal convergence A. Császár and M. Laczkovich
 - 1990-2011 quasi-normal convergence Z. Bukovská, L.
 Bukovský, I. Reclaw, M. Repický, M. Scheepers, D. H. Fremlin, J.
 Haleš, M. Sakai, B. Tsaban, L. Zdomskyy

discrete \rightarrow quasi-normal \rightarrow pointwise

イロト イボト イヨト イヨト

Pointwise convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that $(\forall m \in \omega)(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_m)$

Quasi-normal convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that $(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$

Uniform convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that $(\exists n_0)(\forall x \in X)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$

イロト イ押ト イヨト イヨト

Pointwise convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

 $(\forall m \in \omega)(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_m)$

Quasi-normal convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

 $(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \to |f_n(x) - f(x)| < \varepsilon_n)$

Uniform convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

 $(\exists n_0)(\forall x \in X)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$

イロト イ押ト イヨト イヨトー

Pointwise convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

 $(\forall m \in \omega)(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_m)$

Quasi-normal convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

 $(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$

Uniform convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

 $(\exists n_0)(\forall x \in X)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$

イロト イ押ト イヨト イヨトー

Pointwise convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

 $(\forall m \in \omega)(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_m)$

Quasi-normal convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

 $(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$

Uniform convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\exists n_0)(\forall x \in X)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$$

イロト イポト イヨト イヨト

Pointwise convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

 $(\forall m \in \omega)(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_m)$

Quasi-normal convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\forall x \in X)(\exists n_0)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$$

Uniform convergence

there exists $\langle \varepsilon_n : n \in \omega \rangle$ converging to 0 such that

$$(\exists n_0)(\forall x \in X)(\forall n \in \omega)(n \ge n_0 \rightarrow |f_n(x) - f(x)| < \varepsilon_n)$$

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- b-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ -space

WON-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- QN=wQN (Laver model), QN \neq wQN (any model of ZFC + t = \mathfrak{b})
- γ -space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has Ind(X) = 0 and possesses the Hurewicz property H**

イロト イポト イヨト イヨト

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- b-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ -space

wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- QN=wQN (Laver model), QN \neq wQN (any model of ZFC + t = b)
- γ -space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has Ind(X) = 0 and possesses the Hurewicz property H**

3

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- b-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ-space

wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- QN=wQN (Laver model), QN≠wQN (any model of ZFC + t = b)
- γ -space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has Ind(X) = 0 and possesses the Hurewicz property H**

3

・ロット (雪) (日) (日)

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- b-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ-space

wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- QN=wQN (Laver model), QN \neq wQN (any model of ZFC + $\mathfrak{t} = \mathfrak{b}$)
- γ -space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has Ind(X) = 0 and possesses the Hurewicz property H**

3

・ロト ・回ト ・ヨト ・ヨト

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- b-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ-space

wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- QN=wQN (Laver model), QN \neq wQN (any model of ZFC + $\mathfrak{t} = \mathfrak{b}$)
- γ -space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has Ind(X) = 0 and possesses the Hurewicz property H**

3

・ロン ・聞 と ・ ヨ と ・ ヨ と …

X has the property QN if each sequence of continuous functions converging to zero is converging to zero quasi-normally.

- b-Sierpiński set is a QN-set
- perfectly normal QN-space is a σ-space

wQN-property

X has the property wQN if each sequence of continuous functions converging to zero has a subsequence converging to zero quasi-normally.

- QN=wQN (Laver model), QN \neq wQN (any model of ZFC + $\mathfrak{t} = \mathfrak{b}$)
- γ -space is a wQN-space
- wQN-set is perfectly meager, perfectly normal wQN-space X has Ind(X) = 0 and possesses the Hurewicz property H**

 $C_p(X)$ possesses the **sequence selection property**, shortly **SSP**, if for any functions $f, f_n, f_{n,m} : X \longrightarrow \mathbb{R}$, $n, m \in \omega$, such that

- a) $f_n \longrightarrow f$ on X,
- b) $f_{n,m} \longrightarrow f_n$ on X for every $n \in \omega$,

c) every $f, f_n, f_{n,m}$ is continuous,

there exists $\beta \in {}^{\omega}\omega$ such that $f_{n,\beta(n)} \longrightarrow f$ on X.

```
 \begin{split} \langle f_{0,m} : m \in \omega \rangle \\ \langle f_{1,m} : m \in \omega \rangle \\ \langle f_{2,m} : m \in \omega \rangle \\ \langle f_{3,m} : m \in \omega \rangle \end{split}
```

イロト イ押ト イヨト イヨト

 $C_p(X)$ possesses the **sequence selection property**, shortly **SSP**, if for any functions $f, f_n, f_{n,m} : X \longrightarrow \mathbb{R}$, $n, m \in \omega$, such that

a) $f_n \longrightarrow f$ on X,

b)
$$f_{n,m} \longrightarrow f_n$$
 on X for every $n \in \omega$,

c) every $f, f_n, f_{n,m}$ is continuous,

there exists $\beta \in {}^{\omega}\omega$ such that $f_{n,\beta(n)} \longrightarrow f$ on X.

 $\begin{array}{l} \langle f_{0,m}:m\in\omega\rangle\\\\ \langle f_{1,m}:m\in\omega\rangle\\\\ \langle f_{2,m}:m\in\omega\rangle\\\\ \langle f_{3,m}:m\in\omega\rangle \end{array}$

÷

Image: Image:

 $C_p(X)$ possesses the **sequence selection property**, shortly **SSP**, if for any functions $f, f_n, f_{n,m} : X \longrightarrow \mathbb{R}$, $n, m \in \omega$, such that

- a) $f_n \longrightarrow f$ on X,
- b) $f_{n,m} \longrightarrow f_n$ on X for every $n \in \omega$,

c) every $f, f_n, f_{n,m}$ is continuous,

there exists $\beta \in {}^{\omega}\omega$ such that $f_{n,\beta(n)} \longrightarrow f$ on X.

÷		:			:				·
$\langle f_{3,m}:m\in\omega\rangle$	•	•	•	•	•	•	•	•	
$\langle f_{2,m} : m \in \omega \rangle$	•	•	•	•	•	•	•	•	
$\langle f_{1,m}:m\in\omega\rangle$	•	•	•	•	•	•	•	•	
$\langle f_{0,m}:m\in\omega\rangle$	•	•	•	•	•	•	•	•	

 $C_p(X)$ possesses the **sequence selection property**, shortly **SSP**, if for any functions $f, f_n, f_{n,m} : X \longrightarrow \mathbb{R}$, $n, m \in \omega$, such that

- a) $f_n \longrightarrow f$ on X,
- b) $f_{n,m} \longrightarrow f_n$ on X for every $n \in \omega$,
- c) every $f, f_n, f_{n,m}$ is continuous,

there exists $\beta \in {}^{\omega}\omega$ such that $f_{n,\beta(n)} \longrightarrow f$ on X.

$\langle f_{0,m}:m\in\omega\rangle$	• •	•	•	•	•	•	•		\rightarrow	<i>f</i> ₀
$\langle f_{1,m}:m\in\omega\rangle$	• •	•	•	•	•	•	•			<i>f</i> ₁
$\langle f_{2,m} : m \in \omega \rangle$	• •	•	•	•	•	•	•		\rightarrow	f ₂
$\langle f_{3,m} : m \in \omega \rangle$	• •	•	•	•	•	•	•			f ₃
÷	÷			:				·		↓ f

 $C_p(X)$ possesses the **sequence selection property**, shortly **SSP**, if for any functions $f, f_n, f_{n,m} : X \longrightarrow \mathbb{R}$, $n, m \in \omega$, such that

- a) $f_n \longrightarrow f$ on X,
- b) $f_{n,m} \longrightarrow f_n$ on X for every $n \in \omega$,
- c) every $f, f_n, f_{n,m}$ is continuous,

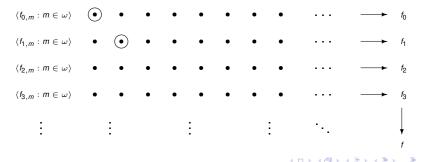
there exists $\beta \in {}^{\omega}\omega$ such that $f_{n,\beta(n)} \longrightarrow f$ on X.

$\langle f_{0,m} : m \in \omega \rangle$	ullet	•	•	•	•	•	•	•		 <i>f</i> ₀
$\langle f_{1,m}:m\in\omega\rangle$	•	•	•	•	•	•	•	•		 <i>f</i> ₁
$\langle f_{2,m} : m \in \omega \rangle$	•	•	•	•	•	•	•	•		 f ₂
$\langle f_{3,m}:m\in\omega\rangle$	•	•	•	•	•	•	•	•		 f ₃
÷	:				:			:	·	↓ f

 $C_p(X)$ possesses the **sequence selection property**, shortly **SSP**, if for any functions $f, f_n, f_{n,m} : X \longrightarrow \mathbb{R}$, $n, m \in \omega$, such that

- a) $f_n \longrightarrow f$ on X,
- b) $f_{n,m} \longrightarrow f_n$ on X for every $n \in \omega$,
- c) every $f, f_n, f_{n,m}$ is continuous,

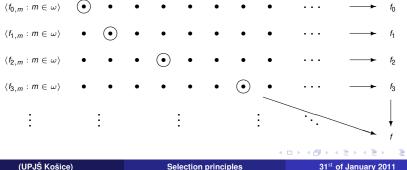
there exists $\beta \in {}^{\omega}\omega$ such that $f_{n,\beta(n)} \longrightarrow f$ on X.



 $C_p(X)$ possesses the **sequence selection property**, shortly **SSP**, if for any functions $f, f_n, f_{n,m} : X \longrightarrow \mathbb{R}$, $n, m \in \omega$, such that

- a) $f_n \longrightarrow f$ on X,
- b) $f_{n,m} \longrightarrow f_n$ on X for every $n \in \omega$,
- c) every $f, f_n, f_{n,m}$ is continuous,

there exists $\beta \in {}^{\omega}\omega$ such that $f_{n,\beta(n)} \longrightarrow f$ on X.



Theorem (M. Scheepers, D. H. Fremlin)

Let X be a topological space. Then the following are equivalent:

- X is a wQN-space;
- **2** $C_{\rho}(X)$ possesses SSP.

X is **Fréchet** (or Fréchet–Urysohn) if for any $A \subseteq X$ and $x \in \overline{A}$ there is $x_n \in A$, $n \in \omega$ such that $x_n \longrightarrow x$.

If $C_p(X)$ is Fréchet, then $C_p(X)$ possesses SSP.

Theorem (M. Scheepers, D. H. Fremlin)

Let X be a topological space. Then the following are equivalent:

- X is a wQN-space;
- **2** $C_{\rho}(X)$ possesses SSP.

X is **Fréchet** (or Fréchet–Urysohn) if for any $A \subseteq X$ and $x \in \overline{A}$ there is $x_n \in A, n \in \omega$ such that $x_n \longrightarrow x$.

If $C_p(X)$ is Fréchet, then $C_p(X)$ possesses SSP.

Image: A matrix

X satisfies the **pointwise–pointwise sequence selection principle**, shortly **PSP**, if for any functions $f, f_n, f_{n,m} : X \longrightarrow \mathbb{R}$, $n, m \in \omega$, such that

- a) $f_n \longrightarrow f$ on X,
- b) $f_{n,m} \longrightarrow f_n$ on X for every $n \in \omega$,
- c) every $f_{n,m}$ is continuous,

there exists an increasing $\beta \in {}^{\omega}\omega$ such that $f_{n,\beta(n)} \longrightarrow f$ on X.

PSP	QSP	DSP
PSQ	QSQ	DSQ
PSD	QSD	DSD

X satisfies the **quasi-normal–pointwise sequence selection principle**, shortly **QSP**, if for any functions $f, f_n, f_{n,m} : X \longrightarrow \mathbb{R}$, $n, m \in \omega$, such that

a) $f_n \xrightarrow{QN} f$ on X,

b)
$$f_{n,m} \xrightarrow{QN} f_n$$
 on X for every $n \in \omega$,

c) every $f_{n,m}$ is continuous,

there exists an increasing $\beta \in {}^{\omega}\omega$ such that $f_{n,\beta(n)} \longrightarrow f$ on X.

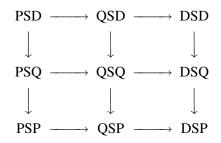
PSP	QSP	DSP
PSQ	QSQ	DSQ
PSD	QSD	DSD

X satisfies the **pointwise–quasi-normal sequence selection principle**, shortly **PSQ**, if for any functions $f, f_n, f_{n,m} : X \longrightarrow \mathbb{R}$, $n, m \in \omega$, such that

- a) $f_n \longrightarrow f$ on X,
- b) $f_{n,m} \longrightarrow f_n$ on X for every $n \in \omega$,
- c) every $f_{n,m}$ is continuous,

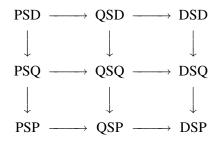
there exists an increasing $\beta \in {}^{\omega}\omega$ such that $f_{n,\beta(n)} \xrightarrow{QN} f$ on X.

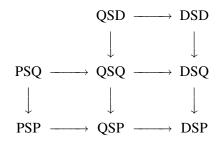
PSP	QSP	DSP		
PSQ	QSQ	DSQ		
PSD	QSD	DSD		



э.

★ 문 ► ★ 문 ►

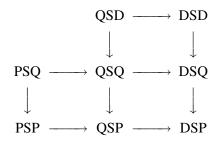




QSD - a sequence of functions converging to zero quasi-normally would have to converge discretely

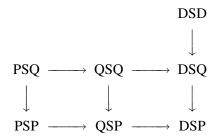
э.

★ 문 ► ★ 문 ►



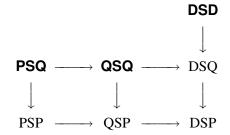
QSD - a sequence of functions converging to zero quasi-normally would have to converge discretely

★ E ► ★ E ► E



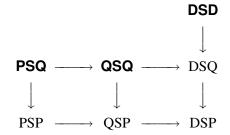
QSD - a sequence of functions converging to zero quasi-normally would have to converge discretely

(* E) * E) E



The following are equivalent:

- X satisfies PSQ;
- X satisfies QSQ;
- X satisfies DSD;
- X is a QN-space.



The following are equivalent:

- X satisfies PSQ;
- 2 X satisfies QSQ;
- X satisfies DSD;
- X is a QN-space.

• cover $\mathcal{U} - \cup \mathcal{U} = X$ and $X \notin \mathcal{U}$

$S_1(\mathcal{A}, \mathcal{B})$ -property

For each sequence $\langle U_n : n \in \omega \rangle$ of covers from \mathcal{A} , there exist sets $U_n \in \mathcal{U}_n$ such that $\{U_n; n \in \omega\} \in \mathcal{B}$.

$\mathsf{U}_{\mathrm{fin}}(\mathcal{A},\mathcal{B})$ -property

For each sequence $\langle U_n : n \in \omega \rangle$ of covers from \mathcal{A} which do not contain a finite subcover, there exist finite subsets $\mathcal{F}_n \subseteq U_n$ such that $\{ \cup \mathcal{F}_n; n \in \omega \} \in \mathcal{B}.$

• γ -cover \mathcal{U} - every $x \in X$ lies in all but finitely many members of \mathcal{U}

.

• cover
$$\mathcal{U} - \cup \mathcal{U} = X$$
 and $X \notin \mathcal{U}$

$S_1(\mathcal{A},\mathcal{B})$ -property

For each sequence $\langle U_n : n \in \omega \rangle$ of covers from \mathcal{A} , there exist sets $U_n \in \mathcal{U}_n$ such that $\{U_n; n \in \omega\} \in \mathcal{B}$.

$U_{fin}(\mathcal{A}, \mathcal{B})$ -property

For each sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of covers from \mathcal{A} which do not contain a finite subcover, there exist finite subsets $\mathcal{F}_n \subseteq \mathcal{U}_n$ such that $\{ \cup \mathcal{F}_n; n \in \omega \} \in \mathcal{B}.$

γ -cover U - every x ∈ X lies in all but finitely many members of U
 family of all countable open γ -covers: Γ

• cover
$$\mathcal{U} - \cup \mathcal{U} = X$$
 and $X \notin \mathcal{U}$

$S_1(\mathcal{A},\mathcal{B})$ -property

For each sequence $\langle U_n : n \in \omega \rangle$ of covers from \mathcal{A} , there exist sets $U_n \in \mathcal{U}_n$ such that $\{U_n; n \in \omega\} \in \mathcal{B}$.

$U_{fin}(\mathcal{A}, \mathcal{B})$ -property

For each sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of covers from \mathcal{A} which do not contain a finite subcover, there exist finite subsets $\mathcal{F}_n \subseteq \mathcal{U}_n$ such that $\{ \cup \mathcal{F}_n; n \in \omega \} \in \mathcal{B}.$

γ -cover U - every x ∈ X lies in all but finitely many members of U
 family of all countable open γ -covers: Γ

- 신 코 에 시 코

• cover
$$\mathcal{U} - \cup \mathcal{U} = X$$
 and $X \notin \mathcal{U}$

$S_1(\mathcal{A}, \mathcal{B})$ -property

(

For each sequence $\langle U_n : n \in \omega \rangle$ of covers from \mathcal{A} , there exist sets $U_n \in \mathcal{U}_n$ such that $\{U_n; n \in \omega\} \in \mathcal{B}$.

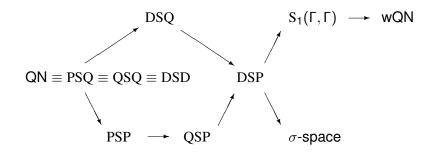
$U_{fin}(\mathcal{A}, \mathcal{B})$ -property

For each sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of covers from \mathcal{A} which do not contain a finite subcover, there exist finite subsets $\mathcal{F}_n \subseteq \mathcal{U}_n$ such that $\{ \cup \mathcal{F}_n; n \in \omega \} \in \mathcal{B}.$

γ -cover U - every x ∈ X lies in all but finitely many members of U
 family of all countable open γ -covers: Γ

- 신 코 에 시 코

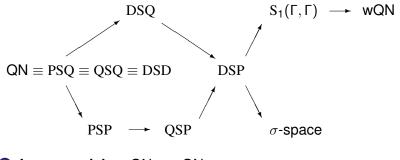
 σ -space - every F_{σ} subset of X is a G_{δ} subset - Δ_2^0



Laver model: QN = wQN

2 ZFC + $\mathfrak{t} = \mathfrak{b}$: there is an S₁(Γ , Γ)-set which is not σ -space

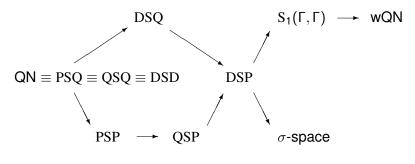
 σ -space - every F_{σ} subset of X is a G_{δ} subset - Δ_2^0



Laver model: QN = wQN

2 **ZFC** + $\mathfrak{t} = \mathfrak{b}$: there is an S₁(Γ , Γ)-set which is not σ -space

 σ -space - every F_{σ} subset of X is a G_{δ} subset - Δ_2^0



- Laver model: QN = wQN
- **2 ZFC** + $\mathfrak{t} = \mathfrak{b}$: there is an S₁(Γ , Γ)-set which is not σ -space

Alternative proof

Theorem

Any QN-space satisfies the QSQ-principle.

Theorem (I. Reclaw)

A perfectly normal QN-space is a σ -space.

Theorem (B. Tsaban – L. Zdomskyy)

Let X be a perfectly normal topological space. TFAE:

- **1** X is a QN-space;
- (2) any Borel image of X into ${}^{\omega}\omega$ is eventually bounded.

< □ > < 同 > < 回 > < 回 > < 回 > < 回

Alternative proof

Theorem

Any QN-space satisfies the QSQ-principle.

Theorem (I. Reclaw)

A perfectly normal QN-space is a σ -space.

Theorem (B. Tsaban – L. Zdomskyy)

Let X be a perfectly normal topological space. TFAE:

- **1** X is a QN-space;
- (2) any Borel image of X into ${}^{\omega}\omega$ is eventually bounded.

ヘロト 人間 ト 人目 ト 人 ヨ トー

Alternative proof

Theorem

Any QN-space satisfies the QSQ-principle.

Theorem (I. Reclaw)

A perfectly normal QN-space is a σ -space.

Theorem (B. Tsaban – L. Zdomskyy)

Let X be a perfectly normal topological space. TFAE:

- X is a QN-space;
- 2 any Borel image of X into ${}^{\omega}\omega$ is eventually bounded.

イロト 不得 トイヨト イヨト 二臣

If a normal topological space X satisfies QSQ, then Ind(X) = 0.

Assume that X is a topological space with Ind(X) = 0:

- any Δ⁰₂-measurable function f : X → [0, 1] is a quasi-normal limit of a sequence of simple Δ⁰₂-measurable functions
- efferted (1,0] ~~X : g notional eldenaceem-{A: elqmic yns ... anotional auountinoo elquic to eoneupea e to tinil.

If X is a perfectly normal topological space satisfying QSQ, then any Borel measurable function f : X — {0,1} is a quasi-normal limit of a sequence of continuous functions.

э

→ ∃ → < ∃</p>

If a normal topological space X satisfies QSQ, then Ind(X) = 0.

Assume that X is a topological space with Ind(X) = 0:

- any Δ₂⁰-measurable function f : X → [0, 1] is a quasi-normal limit of a sequence of simple Δ₂⁰-measurable functions
- any simple Δ₂⁰-measurable function g : X → [0, 1] is a discrete limit of a sequence of simple continuous functions

Theorem

If X is a perfectly normal topological space satisfying QSQ, then any Borel measurable function $f : X \longrightarrow [0, 1]$ is a quasi-normal limit of a sequence of continuous functions.

イロト 不得 トイヨト イヨト

If a normal topological space X satisfies QSQ, then Ind(X) = 0.

Assume that X is a topological space with Ind(X) = 0:

- any Δ₂⁰-measurable function *f* : *X* → [0, 1] is a quasi-normal limit of a sequence of simple Δ₂⁰-measurable functions
- any simple Δ⁰₂-measurable function g : X → [0, 1] is a discrete limit of a sequence of simple continuous functions

Theorem

If X is a perfectly normal topological space satisfying QSQ, then any Borel measurable function $f : X \longrightarrow [0, 1]$ is a quasi-normal limit of a sequence of continuous functions.

ヘロト 人間 とくほ とくほ とう

If a normal topological space X satisfies QSQ, then Ind(X) = 0.

Assume that X is a topological space with Ind(X) = 0:

- any Δ₂⁰-measurable function *f* : *X* → [0, 1] is a quasi-normal limit of a sequence of simple Δ₂⁰-measurable functions
- any simple Δ₂⁰-measurable function g : X → [0, 1] is a discrete limit of a sequence of simple continuous functions

Theorem

If X is a perfectly normal topological space satisfying QSQ, then any Borel measurable function $f : X \longrightarrow [0, 1]$ is a quasi-normal limit of a sequence of continuous functions.

ヘロト 人間 とくほ とくほ とう

If a normal topological space X satisfies QSQ, then Ind(X) = 0.

Assume that X is a topological space with Ind(X) = 0:

- any Δ₂⁰-measurable function *f* : *X* → [0, 1] is a quasi-normal limit of a sequence of simple Δ₂⁰-measurable functions
- any simple Δ₂⁰-measurable function g : X → [0, 1] is a discrete limit of a sequence of simple continuous functions

Theorem

If X is a perfectly normal topological space satisfying QSQ, then any Borel measurable function $f : X \longrightarrow [0, 1]$ is a quasi-normal limit of a sequence of continuous functions.

э

イロト イポト イヨト イヨト

Archangel'skii's properties (α_i)

For i = 1, 2, 3, 4, a topological space *Y* is (α_i) -space if for any $\langle S_n : n \in \omega \rangle$ of sequences converging to some point $y \in Y$, there exists a sequence *S* converging to *y* such that:

- (α_1) $S_n \setminus S$ is infinite for all $n \in \omega$;
- (α_2) $S_n \cap S$ is infinite for all $n \in \omega$;
- (α_3) $S_n \cap S$ is infinite for infinitely many $n \in \omega$;
- (α_4) $S_n \cap S \neq \emptyset$ for infinitely many $n \in \omega$.

TFAE:
 X is a wQN-space;
 C_p(X) possesses (a)
 C_p(X) possesses (a)
 C_p(X) possesses (a)

イロト イ押ト イヨト イヨト

Archangel'skii's properties (α_i)

For i = 1, 2, 3, 4, a topological space *Y* is (α_i) -space if for any $\langle S_n : n \in \omega \rangle$ of sequences converging to some point $y \in Y$, there exists a sequence *S* converging to *y* such that:

- (α_1) $S_n \setminus S$ is infinite for all $n \in \omega$;
- (α_2) $S_n \cap S$ is infinite for all $n \in \omega$;
- (α_3) $S_n \cap S$ is infinite for infinitely many $n \in \omega$;
- (α_4) $S_n \cap S \neq \emptyset$ for infinitely many $n \in \omega$.

TFAE:

- X is a wQN-space;
- 2 $C_{\rho}(X)$ possesses (α_2) ;
- 3 $C_{\rho}(X)$ possesses (α_3) ;
- C_p(X) possesses (α_4).

Archangel'skii's properties (α_i)

For i = 1, 2, 3, 4, a topological space *Y* is (α_i) -space if for any $\langle S_n : n \in \omega \rangle$ of sequences converging to some point $y \in Y$, there exists a sequence *S* converging to *y* such that:

- (α_1) $S_n \setminus S$ is infinite for all $n \in \omega$;
- (α_2) $S_n \cap S$ is infinite for all $n \in \omega$;
- (α_3) $S_n \cap S$ is infinite for infinitely many $n \in \omega$;
- (α_4) $S_n \cap S \neq \emptyset$ for infinitely many $n \in \omega$.

TFAE:

- X is a wQN-space;
- 2 $C_{\rho}(X)$ possesses (α_2) ;
- 3 $C_{\rho}(X)$ possesses (α_3) ;
- C_p(X) possesses (α_4).

- X is a QN-space.
- **2** $C_{\rho}(X)$ possesses (α_1) ;
- 3 $\mathcal{B}_p(X)$ possesses (α_1) ;
- $\mathcal{B}_p(X)$ possesses (α_2) ;
- $\mathcal{B}_p(X)$ possesses (α_3) ;
- $\mathcal{B}_{p}(X)$ possesses (α_{4}) ;
- $\bigcirc \mathcal{B}_p(X)$ possesses SSP;
- X is a QNB-space;
- In the set of the set of X possesses wQN \mathcal{B} .

- X is a QN-space.
- **2** $C_{\rho}(X)$ possesses (α_1);
- 3 $\mathcal{B}_{p}(X)$ possesses $(\alpha_{1});$
- $\mathcal{B}_{p}(X)$ possesses (α_{2});
- **5** $\mathcal{B}_{p}(X)$ possesses (α_{3});
- $\mathcal{B}_{p}(X)$ possesses (α_{4}) ;
- $\mathcal{B}_p(X)$ possesses SSP;
- X is a QNB-space;
- X possesses wQNB.

- X is a QN-space.
- **2** $C_{\rho}(X)$ possesses (α_1);
- 3 $\mathcal{B}_{p}(X)$ possesses $(\alpha_{1});$
- $\mathcal{B}_{p}(X)$ possesses (α_{2});
- **5** $\mathcal{B}_{p}(X)$ possesses (α_{3});
- $\mathcal{B}_{p}(X)$ possesses (α_{4});
- $\mathfrak{O} \mathcal{B}_{\rho}(X)$ possesses SSP;
- X is a QNB-space;
- I possesses wQNB.

- X is a QN-space.
- **2** $C_{\rho}(X)$ possesses (α_1);
- 3 $\mathcal{B}_{p}(X)$ possesses $(\alpha_{1});$
- $\mathcal{B}_{p}(X)$ possesses (α_{2});
- **5** $\mathcal{B}_{p}(X)$ possesses (α_{3});
- $\mathcal{B}_{p}(X)$ possesses (α_{4}) ;
- \mathcal{O} $\mathcal{B}_{\rho}(X)$ possesses SSP;
- X is a QN \mathcal{B} -space;
- **()** X possesses wQN \mathcal{B} .

- family of all countable Borel covers / γ -covers: $\mathcal{B} / \mathcal{B}_{\Gamma}$
- family of all countable closed covers / γ -covers: \mathcal{F} / \mathcal{F}_{Γ}

The following conditions are equivalent:

- X is a QN-space;
- Olosed(X) is weakly distributive / X possesses $U_{fin}(\mathcal{F}, \mathcal{F}_{\Gamma})$;
- **3** Borel(X) is weakly distributive / X possesses $U_{fin}(\mathcal{B}, \mathcal{B}_{\Gamma})$;
- \bigcirc X possesses the property $S_1(\mathcal{F}_{\Gamma_1},\mathcal{F}_{\Gamma});$
- X possesses the property S₁(B_G, B_G);
- Ø X possesses the property (/4)/Kočinac's on (C, C);
- X possesses the property (62);

X possesses the property (B₃)...

- family of all countable Borel covers / γ -covers: $\mathcal{B} / \mathcal{B}_{\Gamma}$
- family of all countable closed covers / γ -covers: *F* / *F*_Γ

The following conditions are equivalent:

- X is a QN-space;
- Olosed(X) is weakly distributive / X possesses $U_{fin}(\mathcal{F}, \mathcal{F}_{\Gamma})$;
- 3 Borel(X) is weakly distributive / X possesses $U_{fin}(\mathcal{B}, \mathcal{B}_{\Gamma})$;
- X possesses the property $S_1(\mathcal{F}_{\Gamma}, \mathcal{F}_{\Gamma})$;
- X possesses the property $S_1(B_{\Gamma}, B_{\Gamma})$;
- O X possesses the property (8)/Kočinac's a (6, 7);
- X possesses the property (β_2) ;

X possesses the property (B₀).

- family of all countable Borel covers / γ -covers: B / B_Γ
- family of all countable closed covers / γ -covers: $\mathcal{F} / \mathcal{F}_{\Gamma}$

The following conditions are equivalent:

- X is a QN-space;
- 2 Closed(X) is weakly distributive / X possesses $U_{fin}(\mathcal{F}, \mathcal{F}_{\Gamma})$;
- Sorel(X) is weakly distributive / X possesses $U_{fin}(\mathcal{B}, \mathcal{B}_{\Gamma})$;
- ④ X possesses the property $S_1(\mathcal{F}_{\Gamma}, \mathcal{F}_{\Gamma})$;
- **5** X possesses the property $S_1(B_{\Gamma}, B_{\Gamma})$;
- If X possesses the property (β_1) /Kočinac's $\alpha_1(\Gamma, \Gamma)$;
- X possesses the property (β_2);
- 3 *X* possesses the property (β_3) .

- family of all countable Borel covers / γ -covers: B / B_Γ
- family of all countable closed covers / γ -covers: $\mathcal{F} / \mathcal{F}_{\Gamma}$

The following conditions are equivalent:

- X is a QN-space;
- 2 Closed(X) is weakly distributive / X possesses $U_{fin}(\mathcal{F}, \mathcal{F}_{\Gamma})$;
- Sorel(X) is weakly distributive / X possesses $U_{fin}(\mathcal{B}, \mathcal{B}_{\Gamma})$;
- X possesses the property $S_1(\mathcal{F}_{\Gamma}, \mathcal{F}_{\Gamma})$;
- **5** *X* possesses the property $S_1(\mathcal{B}_{\Gamma}, \mathcal{B}_{\Gamma})$;
- **I** X possesses the property (β_1) /Kočinac's $\alpha_1(\Gamma, \Gamma)$;
- X possesses the property (β_2);
- If X possesses the property (β_3).

- family of all countable Borel covers / γ -covers: $\mathcal{B} / \mathcal{B}_{\Gamma}$
- family of all countable closed covers / γ -covers: $\mathcal{F} / \mathcal{F}_{\Gamma}$

The following conditions are equivalent:

- X is a QN-space;
- 2 Closed(X) is weakly distributive / X possesses $U_{fin}(\mathcal{F}, \mathcal{F}_{\Gamma})$;
- Sorel(X) is weakly distributive / X possesses $U_{fin}(\mathcal{B}, \mathcal{B}_{\Gamma})$;
- X possesses the property $S_1(\mathcal{F}_{\Gamma}, \mathcal{F}_{\Gamma})$;
- **5** *X* possesses the property $S_1(\mathcal{B}_{\Gamma}, \mathcal{B}_{\Gamma})$;
- **(b)** *X* possesses the property (β_1) /Kočinac's $\alpha_1(\Gamma, \Gamma)$;
- X possesses the property (β_2) ;
- **3** *X* possesses the property (β_3).

Thanks for your attention!

(UPJŠ Košice)

Selection principles

31st of January 2011 26 / 26