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Hausdorff - normal - perfectly normal topological spaces - X

real valued functions

a topological space of real valued continuous, Borel measurable
functions with product topology denoted as Cp(X ),Bp(X ),
respectively

discrete convergence of 〈fn : n ∈ ω〉:

(∀x ∈ X )(∃n0)(∀n ∈ ω)(n ≥ n0 → fn(x) = f (x))

quasi-normal convergence:
1970’s - equal convergence - A. Császár and M. Laczkovich
1990-2011 - quasi-normal convergence - Z. Bukovská, L.
Bukovský, I. Reclaw, M. Repický, M. Scheepers, D. H. Fremlin, J.
Haleš, M. Sakai, B. Tsaban, L. Zdomskyy

discrete→ quasi-normal→ pointwise

(UPJŠ Košice) Selection principles 31st of January 2011 2 / 26



Hausdorff - normal - perfectly normal topological spaces - X

real valued functions

a topological space of real valued continuous, Borel measurable
functions with product topology denoted as Cp(X ),Bp(X ),
respectively

discrete convergence of 〈fn : n ∈ ω〉:

(∀x ∈ X )(∃n0)(∀n ∈ ω)(n ≥ n0 → fn(x) = f (x))

quasi-normal convergence:
1970’s - equal convergence - A. Császár and M. Laczkovich
1990-2011 - quasi-normal convergence - Z. Bukovská, L.
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Quasi-normal convergence of sequence 〈fn : n ∈ ω〉
Pointwise convergence
there exists 〈εn : n ∈ ω〉 converging to 0 such that

(∀m ∈ ω)(∀x ∈ X )(∃n0)(∀n ∈ ω)(n ≥ n0 → |fn(x)− f (x)| < εm)

Quasi-normal convergence
there exists 〈εn : n ∈ ω〉 converging to 0 such that

(∀x ∈ X )(∃n0)(∀n ∈ ω)(n ≥ n0 → |fn(x)− f (x)| < εn)

Uniform convergence
there exists 〈εn : n ∈ ω〉 converging to 0 such that

(∃n0)(∀x ∈ X )(∀n ∈ ω)(n ≥ n0 → |fn(x)− f (x)| < εn)
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QN-property
X has the property QN if each sequence of continuous functions
converging to zero is converging to zero quasi-normally.

b-Sierpiński set is a QN-set
perfectly normal QN-space is a σ-space

wQN-property
X has the property wQN if each sequence of continuous functions
converging to zero has a subsequence converging to zero
quasi-normally.

QN=wQN (Laver model), QN6=wQN (any model of ZFC + t = b)
γ-space is a wQN-space
wQN-set is perfectly meager, perfectly normal wQN-space X has
Ind(X ) = 0 and possesses the Hurewicz property H∗∗
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Selection principles

Cp(X ) possesses the sequence selection property, shortly SSP, if
for any functions f , fn, fn,m : X −→ R, n,m ∈ ω, such that

a) fn −→ f on X ,
b) fn,m −→ fn on X for every n ∈ ω,
c) every f , fn, fn,m is continuous,

there exists β ∈ ωω such that fn,β(n) −→ f on X .

〈f0,m : m ∈ ω〉

〈f1,m : m ∈ ω〉

〈f2,m : m ∈ ω〉

〈f3,m : m ∈ ω〉

...
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(UPJŠ Košice) Selection principles 31st of January 2011 5 / 26



Selection principles

Cp(X ) possesses the sequence selection property, shortly SSP, if
for any functions f , fn, fn,m : X −→ R, n,m ∈ ω, such that

a) fn −→ f on X ,
b) fn,m −→ fn on X for every n ∈ ω,
c) every f , fn, fn,m is continuous,

there exists β ∈ ωω such that fn,β(n) −→ f on X .

〈f0,m : m ∈ ω〉 r r r r r r r r . . .

〈f1,m : m ∈ ω〉 r r r r r r r r . . .

〈f2,m : m ∈ ω〉 r r r r r r r r . . .

〈f3,m : m ∈ ω〉 r r r r r r r r . . .

...
...

...
...

. . .
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Theorem (M. Scheepers, D. H. Fremlin)
Let X be a topological space. Then the following are equivalent:

1 X is a wQN-space;
2 Cp(X ) possesses SSP.

X is Fréchet (or Fréchet–Urysohn) if for any A ⊆ X and x ∈ A there is
xn ∈ A,n ∈ ω such that xn −→ x.

If Cp(X ) is Fréchet, then Cp(X ) possesses SSP.
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Selection principles

X satisfies the pointwise–pointwise sequence selection principle,
shortly PSP, if for any functions f , fn, fn,m : X −→ R, n,m ∈ ω, such that

a) fn −→ f on X ,
b) fn,m −→ fn on X for every n ∈ ω,
c) every fn,m is continuous,

there exists an increasing β ∈ ωω such that fn,β(n) −→ f on X .

PSP QSP DSP

PSQ QSQ DSQ

PSD QSD DSD
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Selection principles
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Selection principles
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Trivial relations

PSD −−−−→ QSD −−−−→ DSDy y y
PSQ −−−−→ QSQ −−−−→ DSQy y y
PSP −−−−→ QSP −−−−→ DSP

PSD - a sequence of functions converging to zero would have to
converge discretely
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(UPJŠ Košice) Selection principles 31st of January 2011 16 / 26



Trivial relations

DSDy
PSQ −−−−→ QSQ −−−−→ DSQy y y
PSP −−−−→ QSP −−−−→ DSP

PSD - a sequence of functions converging to zero would have to
converge discretely

QSD - a sequence of functions converging to zero quasi-normally
would have to converge discretely
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A perfectly normal topological space X

DSDy
PSQ −−−−→ QSQ −−−−→ DSQy y y
PSP −−−−→ QSP −−−−→ DSP

The following are equivalent:
1 X satisfies PSQ;
2 X satisfies QSQ;
3 X satisfies DSD;
4 X is a QN-space.
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Covering properties

cover U - ∪ U = X and X /∈ U

S1(A,B)-property
For each sequence 〈Un : n ∈ ω〉 of covers from A, there exist sets
Un ∈ Un such that {Un; n ∈ ω} ∈ B.

Ufin(A,B)-property
For each sequence 〈Un : n ∈ ω〉 of covers from A which do not contain
a finite subcover, there exist finite subsets Fn ⊆ Un such that
{∪ Fn; n ∈ ω} ∈ B.

γ -cover U - every x ∈ X lies in all but finitely many members of U
family of all countable open γ -covers: Γ
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γ -cover U - every x ∈ X lies in all but finitely many members of U
family of all countable open γ -covers: Γ
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A perfectly normal topological space X

σ-space - every Fσ subset of X is a Gδ subset - ∆0
2

QN ≡ PSQ ≡ QSQ ≡ DSD
�
�
�
�3

A
AAU

DSQ

PSP - QSP

Q
Q
Q
Qs

�
���

DSP
�
���

A
AAU

S1(Γ, Γ)

σ-space

- wQN

1 Laver model: QN = wQN
2 ZFC + t = b: there is an S1(Γ, Γ)-set which is not σ-space
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Alternative proof

Theorem

Any QN-space satisfies the QSQ-principle.

Theorem (I. Reclaw)

A perfectly normal QN-space is a σ-space.

Theorem (B. Tsaban – L. Zdomskyy)
Let X be a perfectly normal topological space. TFAE:

1 X is a QN-space;
2 any Borel image of X into ωω is eventually bounded.
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Approximation

Theorem

If a normal topological space X satisfies QSQ, then Ind(X ) = 0.

Assume that X is a topological space with Ind(X ) = 0:
any ∆0

2-measurable function f : X −→ [0,1] is a quasi-normal limit
of a sequence of simple ∆0

2-measurable functions
any simple ∆0

2-measurable function g : X −→ [0,1] is a discrete
limit of a sequence of simple continuous functions

Theorem

If X is a perfectly normal topological space satisfying QSQ, then any
Borel measurable function f : X −→ [0,1] is a quasi-normal limit of
a sequence of continuous functions.
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Archangel’skiı̌’s properties (αi)

For i = 1,2,3,4, a topological space Y is (αi )-space if for any
〈Sn : n ∈ ω〉 of sequences converging to some point y ∈ Y , there
exists a sequence S converging to y such that:

(α1) Sn \ S is infinite for all n ∈ ω;
(α2) Sn ∩ S is infinite for all n ∈ ω;
(α3) Sn ∩ S is infinite for infinitely many n ∈ ω;
(α4) Sn ∩ S 6= ∅ for infinitely many n ∈ ω.

TFAE:
1 X is a wQN-space;
2 Cp(X ) possesses (α2);
3 Cp(X ) possesses (α3);
4 Cp(X ) possesses (α4).
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A perfectly normal topological space X

The following conditions are equivalent:
1 X is a QN-space.
2 Cp(X ) possesses (α1);
3 Bp(X ) possesses (α1);
4 Bp(X ) possesses (α2);
5 Bp(X ) possesses (α3);
6 Bp(X ) possesses (α4);
7 Bp(X ) possesses SSP;
8 X is a QNB-space;
9 X possesses wQNB.
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A perfectly normal topological space X

family of all countable Borel covers / γ -covers: B / BΓ

family of all countable closed covers / γ -covers: F / FΓ

The following conditions are equivalent:
1 X is a QN-space;
2 Closed(X ) is weakly distributive / X possesses Ufin(F ,FΓ);
3 Borel(X ) is weakly distributive / X possesses Ufin(B,BΓ);
4 X possesses the property S1(FΓ,FΓ);
5 X possesses the property S1(BΓ,BΓ);
6 X possesses the property (β1)/Kočinac’s α1(Γ, Γ);
7 X possesses the property (β2);
8 X possesses the property (β3).
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Thanks for your attention!
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